Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Article in English | IMSEAR | ID: sea-170335

ABSTRACT

Background & objectives: Mucopolysaccharidosis type VI (MPS VI) is a rare, autosomal recessive lysosomal storage disorder caused by deficient enzymatic activity of N-acetyl galactosamine-4-sulphatase resulting from mutations in the arylsulphatase B (ARSB) gene. The ARSB gene is located on chromosome 5q11-q13 and is composed of eight exons. More than hundred ARSB mutations have been reported so far, but the mutation spectrum of MPS VI in India is still unknown. Hence, the aim of the present study was to identify the mutational spectrum in patients with MPS VI in India and to study the genotype-phenotype association and functional outcomes of these mutations. Methods: Molecular characterization of the ARSB gene by Sanger sequencing was done for 15 patients (aged 15 months to 11 yr) who were enzymatically confirmed to have MPS VI. Age of onset, clinical progression and enzyme activity levels in each patient were studied to look for genotype-phenotype association. Haplotype analysis performed for unrelated patients with the recurring mutation W450C, was suggestive of a founder effect. Sequence and structural analyses of the ARSB protein using standard software were carried out to determine the impact of detected mutations on the function of the ARSB protein. Results: A total of 12 mutations were identified, of which nine were novel mutations namely, p.D53N, p.L98R, p.Y103SfsX9, p.W353X, p.H393R, p.F166fsX18, p.I220fsX5, p.W450L, and p.W450C, and three were known mutations (p.D54N, p.A237D and p.S320R). The nine novel sequence variants were confirmed not to be polymorphic variants by performing sequencing in 50 unaffected individuals from the same ethnic population. Interpretation & conclusions: Nine novel mutations were identified in MPS VI cases from India in the present study. The study also provides some insights into the genotype-phenotype association in MPS VI.

2.
Indian J Exp Biol ; 2002 Oct; 40(10): 1110-20
Article in English | IMSEAR | ID: sea-55951

ABSTRACT

Ten isoleucine+valine and three leucine auxotrophs of Sinorhizobium meliloti Rmd201 were obtained by random mutagenesis with transposon Tn5 followed by screening of Tn5 derivatives on minimal medium supplemented with modified Holliday pools. Based on intermediate feeding, intermediate accumulation and cross-feeding studies, isoleucine+valine and leucine auxotrophs were designated as ilvB/ilvG, ilvC and ilvD, and leuC/leuD and leuB mutants, respectively. Symbiotic properties of all ilvD mutants with alfalfa plants were similar to those of the parental strain. The ilvB/ilvG and ilvC mutants were Nod-. Inoculation of alfalfa plants with ilvB/ilvG mutant did not result in root hair curling and infection thread formation. The ilvC mutants were capable of curling root hairs but did not induce infection thread formation. All leucine auxotrophs were Nod+ Fix-. Supplementation of leucine to the plant nutrient medium did not restore symbiotic effectiveness to the auxotrophs. Histological studies revealed that the nodules induced by the leucine auxotrophs did not develop fully like those induced by the parental strain. The nodules induced by leuB mutants were structurally more advanced than the leuC/leuD mutant induced nodules. These results indicate that ilvB/ilvG, ilvC and one or two leu genes of S. meliloti may have a role in symbiosis. The position of ilv genes on the chromosomal map of S. meliloti was found to be near ade-15 marker.


Subject(s)
DNA Transposable Elements , Isoleucine/metabolism , Leucine/metabolism , Medicago sativa/microbiology , Mutagenesis , Sinorhizobium meliloti/genetics , Symbiosis , Valine/metabolism
3.
Indian J Exp Biol ; 2002 Oct; 40(10): 1121-30
Article in English | IMSEAR | ID: sea-57475

ABSTRACT

Twenty one cysteine and 13 methionine auxotrophs of Sinorhizobium meliloti Rmd201 were obtained by random mutagenesis with transposon Tn5. The cysteine auxotrophs were sulfite reductase mutants and each of these auxotrophs had a mutation in cysI/cysJ gene. The methionine auxotrophs were metA/metZ, metE and metF mutants. One hundred per cent co-transfer of Tn5-induced kanamycin resistance and auxotrophy from each Tn5-induced auxotrophic mutant indicated that each mutant cell most likely had a single Tn5 insertion. However, the presence of more than one Tn5 insertions in the auxotrophs used in our study cannot be ruled out. All cysteine and methionine auxotrophs induced nodules on alfalfa plants. The nodules induced by cysteine auxotrophs were fully effective like those of the parental strain-induced nodules, whereas the nodules induced by methionine auxotrophs were completely ineffective. The supplementation of methionine to the plant nutrient medium completely restored symbiotic effectiveness to the methionine auxotrophs. These results indicated that the alfalfa host provides cysteine but not methionine to rhizobia during symbiosis. Histological studies showed that the defective symbiosis of methionine auxotrophs with alfalfa plants was due to reduced number of infected nodule cells and incomplete transformation of bacteroids.


Subject(s)
Cysteine/metabolism , DNA Transposable Elements , Medicago sativa/microbiology , Methionine/metabolism , Mutagenesis , Sinorhizobium meliloti/genetics , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL